Равнобедренный треугольник.

5bad88e4

Среди всех треугольников есть два особенных вида: прямоугольные треугольники и равнобедренные треугольники. Чем же эти виды треугольников такие уж особенные? Ну, во-первых, такие треугольники чрезвычайно часто оказываются главными действующими «лицами» задач ЕГЭ первой части. А во-вторых, задачи про прямоугольные и равнобедренные треугольники решаются гораздо легче, чем другие задачи по геометрии. Нужно всего лишь знать несколько правил и свойств. Все самое интересное о прямоугольных треугольниках обсуждается в соответствующей теме, а сейчас рассмотрим равнобедренные треугольники. И прежде всего, что же такое – равнобедренный треугольник. Или, как говорят математики, каково определение равнобедренного треугольника? В случае если вас интересуют все свойства равнобедренного треугольника, рекомендуем обратиться на сайт profmeter.com.ua.

Треугольник называется равнобедренным, если у него есть две равные стороны.
Посмотри, как это выглядит:

Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон. Две равные стороны называются боковыми сторонами, а третья сторона – основанием.

Так что будь внимательным: боковая сторона – одна из двух равных сторон в равнобедренном треугольнике, а основание – третья сторона.

Чем же так уж хорош равнобедренный треугольник? Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?

Это просто линия, проведённая из вершины треугольника перпендикулярно противоположной стороне. Итак, провели высоту.
Что же получилось? Из одного равнобедренного треугольника получилось два прямоугольных.

Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:

Видишь, два прямоугольных треугольника (?ABH?ABH и ?CBH?CBH) – одинаковые! Или, как математически любят говорить? равные!
Ну, во-первых, конечно, этим странным математикам мало просто видеть – нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.

Но не переживай: в данном случае доказывать почти так же просто, как и видеть.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *